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AMD’s Third Generation OpteronTM

Processor Technology

Native quad core die

Optimized for 65nm SOI
and beyond

IPC enhanced 
CPU cores

32B instruction fetch

Improved branch prediction

Out-of-order load execution

Up to 4 DP FLOPS/cycle

Dual 128-bit SSE dataflow

Dual 128-bit loads per cycle

Instruction Extensions

Power Management Extensions

Enhanced Direct 
Connect Architecture 
and Northbridge

Enhanced 
HyperTransportTM links 

Enhanced crossbar

DDR2 with migration 
path to DDR3

Enhanced power 
management and RAS

Expandable shared 
L3 cache
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Comprehensive Upgrades for SSE128
128bit FPU

Can perform SSE MOVs in the FP “store” pipe

� Execute two generic SSE ops + SSE MOV each cycle (+ two 128-bit SSE 
loads)

36 Dedicated x 128-
bit ops

36 Dedicated x 
64-bit ops

FP Scheduler 
Depth

128 bits/cycle64 bits/cycleL2/NB Bandwidth

2 x 128bit 
loads/cycle

2 x 64bit 
loads/cycle

Data Cache 
Bandwidth

32 bytes/cycle + 
unaligned Ld-Ops

16 bytes/cycleInstruction Fetch 
Bandwidth

128 + SSE MOVs64SSE Exec Width

3rd Gen. “Barcelona”2nd Gen. Opteron Parameter

SSE Unaligned Load-Execute mode

� Remove alignment requirements for SSE ld-op instructions

� Eliminate awkward pairs of separate load and compute instructions

� To improve instruction packing and decoding efficiency
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Core IPC improvements

L1
Icache
64KB

Fetch

Int Decode & Rename

µOPs

36-entry FP scheduler

FADD FMISCFMUL

Branch
Prediction

44-entry
Load/
Store
Queue

Instruction Control Unit (72 entries)L1
Dcache
64KB

Fastpath Microcode Engine

Scan/Align

FP Decode & Rename

AGU

ALU

AGU

ALU

MULT

AGU

ALU

Res Res Res

•Improve Branch Prediction.
•TLB enhancements.
•More out of order Ld/St 
capability.
•New Instructions

•POPCNT / LZCNT
•EXTRQ / INSERTQ 
•MOVNTSD / MOVNTSS

•Fastpath support for FP to 
Integer data movement.
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TLB Enhancements

•Support for 1GB pagesize (4k, 2M, 1G)

•48 bit physical addresses = 256TB (increase from previous 40bits)

•Data TLB

– L1 Data TLB

– 48 entries, fully associative

– all 48 entries support any pagesize

– L2 TLB

– 512 4k entries, or

– 128 2M entries

� Instruction TLB

– L1 Instruction TLB

– fully associative

– support for 4k or 2M pagesizes

– L2 Instruction TLB
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Data Prefetch 

� Hardware prefetching

– DRAM prefetcher

� tracks positive, negative, non-unit strides.

� dedicated buffer (in NB) to hold prefetched data.

� Aggressively use idle DRAM cycles.

– Core prefetchers

� Does hardware prefetching into L1 Dcache.

� Software prefetching instructions

– MOV (prefetch via load / store)

– prefetcht0, prefetcht1, prefetcht2 (currently all treated the same)

– prefetchw = prefetch with intent to modify

– prefetchnta = prefetch non-temporal (favor for replacement)
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Cache Hierarchy

Dedicated L1 cache

– 2 way associativity.

– 8 banks.

– 2 128bit loads per cycle.

Dedicated L2 cache

– 16 way associativity.

Shared L3 cache

– 32 way associativity.

– fills from L3 leave likely 
shared lines in L3.

– sharing aware replacement 
policy.

2MB

Cache 
Control

64KB

512KB

Core 1

Cache 
Control

64KB

512KB

Core 2

Cache 
Control

64KB

512KB

Core 3

Cache 
Control

64KB

512KB

Core 4
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Multi-socket System overview
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key:
cHT = coherent HyperTransport
ncHT = non-coherent HyperTransport
XBAR = crossbar switch
SRI = system request interface (memory access, cache probes, etc.)
MCT = memory controller
HB = host bridge (e.g. HT to PCI, SeaStar, etc.)

Inter-socket Probes and Probe Responses travel:
SRI -> XBAR -> cHT -> cHT -> XBAR -> SRI

Probes Requests initiate at home memory node, but 
return directly to node making initial memory request.
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Cache Coherency (MOESI protocol)

Invalid Exclusive

Modified
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Read Hit
Probe Read Hit
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Write HitProb
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•“Read” and “Write” are by this core.
•“Probe Read” and “Probe Write” are 
reads and writes by others, that must 
probe this core’s caches.

(May consider Owned as 
special case of Shared)
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Cache Coherency (Practical Advice)

• Avoid shared read and shared write data in same cacheline.

• Avoid gratuitously modifying shared data.

– Sharing aware L3 helps within a chip, but doesn’t make such 
updates free.

– Minimize false sharing where compiler has to play it safe.

• Requirement to wait for all probe responses means local 
memory and remote cache accesses have similar latencies.

– Sometimes thinking of just memory is just fine. 

– Let library and compiler writers worry about being uber-clever.

• Aliasing, Aliasing, Aliasing of addresses. (Help the compiler).

– If compiler’s unsure about potential aliasing it must play it safe 
and generate extra stores and loads, instead of working only with 
registers.
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Sharing Aware (Partially Inclusive) L3

• Inclusive vs. Exclusive Cache Paradigms

– Inclusive: L3 contains L2 contains L1 (i.e. supersets).

– Exclusive: L3, L2, and L1 are disjoint sets.

• L3 tracks core that last touched cacheline.

– Read request from a different core cause L3 to retain copy 
of data in O or S state.

– i.e. assumes data shared, hence inclusive behavior.

– Read from same core causes L3 to return data and 
invalidate cacheline in L3 (not retain a copy).

– i.e. assumes data not shared, hence exclusive cache behavior.

– Writes from same core or different cores implemented 
according to exclusive cache paradigm.
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A Few Programming Hints 
L3 Cache Data Sharing

Optimizing Producer Consumer ring buffers

1. Data gets into L3 by spilling from L1+L2.

2. Consumer must “lag” producer by at least L1+L2 bytes so data 
is in L3 when consumed. (artifact of victim cache design).

3. Producer must not get too far ahead or it will flood L3 and evict 
unconsumed lines.

4. Producer must lag consumer by at least L1+L2 bytes so data is 
written into L3 with minimal collision with Consumer. (MOESI 
artifact).

5. Consumer should use PrefetchW* to prefetch data.

6. Ring Buffer should be at least 2 x (L1+L2) in size, plus some 
cushion.

7. Remember, to account for L3 size per Producer-Consumer pair. 
(when running 1 pair vs. 2 pairs per chip).

* PrefetchW brings data into cache in M state. Otherwise data might come in 
as S state and L3 retains a copy in O state.
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A Few Programming Hints

• Use SSE2 instructions that modify entire 128bit SSE register instead 
of preserving one half.

•Generally good to prefetch 6 to 8 cachelines ahead

– Latency-Bandwidth product estimates how much data must be “in-flight”

� 1P, DDR2-800 ~= 53ns * 10GB/s = 530 Bytes = ~8 cache lines in flight.

� 2P, DDR2-667 ~= 81ns * 17GB/s = 1377 Bytes = ~21 cache lines in flight 
(combined across both Northbridges).

• Try to have 100 cycles of computation in loop body between 
successive prefetches

• Avoid issuing multiple software prefetches to the same cacheline

• Unroll loops enough times so each iteration works on 1 or more 
cachelines of data.

note: neither hw or sw prefetches will be allowed to generate page 
faults, but a TLB miss on a prefetch can initiate a TLB fill.
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A Few Programming Hints

movntmovnthwprefetcher + 
prefetchw

hwprefetcher 
+ prefetchw

Sequential write only

movntmovntprefetchwprefetchwWrite only

prefetchntaprefetchntaprefetchwprefetchwSequential read-
write

prefetchntaprefetchntaprefetchwprefetchwRead-write

prefetchntaprefetchntahwprefetcher + 
prefetch

hwprefetcher 
+ prefetch

Sequential read only

prefetchntaprefetchntaprefetchprefetch or 
prefetchnta

Read only

Not ReusedReused

Greater than 
½ L2 size

Less than ½ L2 size or of unknown 
size

Less than ½
L1 size

Data

Which Prefetch to use ?
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SOME MULTI-CORE
PERFORMANCE EXAMPLES
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OpenMP Stream – Two Sockets

STREAM scaling
2 socket 2.3 GHz Barcelona DDR2-667 
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Copy:
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Supermicro H8DMU serverboard, 
Two 2.3GHz Barcelona cpus, 
8 x 2GB DDR2-667 CL5 memory
SLES10 SP1, Pathscale 3.1 C compiler
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Levesque Loops 41080 and 41081
#define LCOUNT 1000000
#define N 11
#define AIDX2 128
#define BIDX2 14

double A[N][AIDX2];
double B[N][BIDX2];
double c0, c1, c2, c3, c4, c5, c6, c7, c8;

int Work41080() {
int i,j,l;

for (l=0; l < LCOUNT; l++) {
for (i=0; i < N; i++) {
A[i][0] = c1*A[i][12] + c2*A[i][11] + c3*A[i][10] +

c4*A[i][9]  + c5*A[i][8]  + c6*A[i][7]  +
c7*A[i][6]  + c0*A[i][4]  + A[i][5]     + A[i][2];

}
}
return(0);

}

int Work41081() {
int i,j,l;

for (l=0; l < LCOUNT; l++) {
for (i=0; i < N; i++) {
B[i][0] = c1*B[i][12] + c2*B[i][11] + c3*B[i][10] +

c4*B[i][9]  + c5*B[i][8]  + c6*B[i][7]  +
c7*B[i][6]  + c0*B[i][4]  + B[i][5]     + B[i][2];

}
}
return(0);

}

Notes: 
• C translation of original Fortran 
code to facilitate performance 
counter instrumentation.
• Array indices were reversed 
accordingly.
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IPC, Cycle, and Instruction Counts

41081 
(B[i][])

41080 
(A[i][])

Loop IPCUser CyclesUser 
Instructions

TSC

1.631001198048238323016777198239940

1.656350195017197323016777195183582

• Instrumentation inserted just before and after loops to 
read HW performance counters.
• Only difference in loops was dimension of the fast moving 
array index.

• Each iteration on A[i] strides 1024 bytes
• Each iteration on B[i] strides 112 bytes

• Powers of two alignment can sometimes be suboptimal, 
but not always.
• Best Advice: Proof is in the pudding, try padding and see.

A[11][128], sizeof(A[0][])=1024, (&A[i+1][0] - &A[i][0])=1024 bytes
B[11][14], sizeof(B[0][])=112, (&B[i+1][0] - &B[i][0])=112 bytes



20 October 14, 2008

Opteron™ (Barcelona) System

Tyan Thunder n425QE (S4985E)
Four Opteron 8356 CPUs @ 2.3GHz
16 x 2GB DDR2-667
SLES10 SP1 X86_64
PathScale Compiler Suite 3.1

Multi-core Performance Example

SPEC OMPL2001 (SPEC-HPG OpenMP benchmark)
313.swim_l (shallow water ocean model)
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Multi-core Performance Example
313.swim_l (shallow water modeling, large dataset) 

* Pathscale ™ Compiler Suite, Version 3.1, SLES10 SP1

Three sets of compiler* flags used:

“Ofast”
-mp -Ofast -mcpu=barcelona -OPT:early_mp=on -mcmodel=medium

“Ofast_simd0”
-mp -Ofast -mcpu=barcelona -OPT:early_mp=on -LNO:simd=0 -mcmodel=medium

“Ofast_movnti2500”
-mp -Ofast -mcpu=barcelona -OPT:early_mp=on -CG:movnti=2500 -mcmodel=medium

1785s  (30m)Ofast_movnti2500

1736s  (29m)Ofast_simd0

7194s  (120m)Ofast

Runtime in secs. (mins.)Flags

Too much of a good thing? (streaming stores or vectorization)
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Multi-core Performance Example
313.swim_l (shallow water modeling, large dataset) 

Profiling shows

Ofast
samples    %       symbol name
598797565 79.1052  __ompdo_calc3_1
90931114 12.0126  __ompregion_calc2_1
48912887  6.4617  __ompregion_calc1_1
17952271  2.3716  __ompdo_MAIN__1
153331  0.0203  __ompdo_calc3z_1

Ofast_simd0
samples   %       symbol name
68233066 34.4688  __ompregion_calc2_1
61859772 31.2492  __ompdo_calc3_1
48931003 24.7181  __ompregion_calc1_1
18617176  9.4047  __ompdo_MAIN__1
132326  0.0668  __ompdo_calc3_2

Ofast_movnti2500
samples   %       symbol name
68314854 34.4881  __ompregion_calc2_1
61749164 31.1735  __ompdo_calc3_1
48932509 24.7031  __ompregion_calc1_1
18770527  9.4761  __ompdo_MAIN__1
132286  0.0668  __ompdo_calc3_2

Problem Size:
7701 x 7701 grid, REAL*8 
452MB per array (5.8GB total)

Program Structure:
10 NCYCLE=NCYCLE+1
Calc1 (writes 4 arrays)
...

Calc2 (writes 3 arrays)
...

Calc3 (writes 6 arrays)
...

GOTO 10

Oprofile: Counted CPU_CLK_UNHALTED events (Cycles outside of halt state)
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Multi-core Performance Example
313.swim_l (shallow water modeling, large dataset) 

* Pathscale ™ Compiler Suite, Version 3.1, SLES10 SP1

Performance Counters

default "-LNO:simd=0" "-CG:movnti=2500"
CPI 14 2.55 3.7
Clocks(B) 15373 4107 4146
Insts(B) 1100 1618 1096
L3Req 440.000 161.800 142.480
L3Miss 330.000 134.294 134.808
totSSE 792.000 1164.960 789.120
FPadd pipe 583.000 388.320 252.080
FPmult pipe 242.000 210.340 151.248
FPstore pipe 291.500 142.384 113.984
PgOpen 253.000 37.214 36.168
PgClose 233.200 114.878 111.792
PgCflct 114.400 63.102 61.376

absolute(B)

Ofast = default
Ofast_simd0 = -LNO:simd=0
Ofast_movnti2500 = -CG:movnti=2500
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Summary

Core Improvements:

� Core IPC, Caches and TLB.

� FPU and memory performance.

Multi-Core Implications:

� Flop rich environment.

� Shared L3 data, “partially inclusive” nature.

Multi-Socket Implications (looking forward – i.e. XT5):

� NUMA awareness.

� Cache Probing, Data Transfer across HT links.



25 October 14, 2008

References

• AMD Opteron Processor Families Technical Documentation
– http://www.amd.com/us-en/Processors/TechnicalResources/0,,30_182_739_9003,00.html

• Bios and Kernel Developers Guide (BKDG) on AMD website.

– RevF cpus are denoted as “Family 0Fh”.

– Quadcore  BKDG is “Family 10h”.

� Portions useful to others than just Bios and Kernel developers.

• Software Optimization Guide for AMD64 Processors

– Quadcore version available on AMD website.
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